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The dynamics and the stability of a forced damped nonlinear oscillator driven at twice its resonance
frequency are studied. At the transition from a dissipative system to a Hamiltonian system, simple
scalings relations are found by the use of the Floquet theory of the linearized problem. The Floquet
exponents and the period-doubling bifurcation point are determined analytically in the limit of small
damping. The theory is compared to numerical calculations on a Duffing oscillator and excellent

agreement is found.
PACS number(s): 05.45.+b, 02.90.+p

Nonlinear oscillators appear in many different contexts
in physics, chemistry, and biology. Therefore a deeper
understanding of universal features for classes of oscil-
lators is important. Most oscillators are coupled to an
environment and are as a result damped. In some cases
this damping is small and can be neglected, and the re-
sulting “model” system is said to be Hamiltonian. But
for some features of a nonlinear oscillator the transition
between a dissipative and a Hamiltonian systems can be
subtle and as a result the dynamics cannot be derived
from a Hamiltonian system no matter how small the dis-
sipation is. The existence of universal features at the
transition between dissipative and Hamiltonian systems
is well known and has particularly been studied for the
transition to chaos through an infinite period-doubling
sequence [1, 2]. The present paper deals also with uni-
versality for a system that is able to undergo a period-
doubling bifurcation, but instead of looking at the infinite
sequence, we study the features of a oscillator at the first
period-doubling bifurcation.

The paper is organized as follows. First a nonlin-
ear damped oscillator is introduced. This equation is
then linearized around a stable limit cycle with period
T. From the linearized equation the stability of the limit
cycle is determined by the use of Floquet theory. In par-
ticular the bifurcation point as a function of the system
parameters is determined. This result will be used to
rescale the amplitude of the driving field and to derive
scaling relations. We then discuss the response of the sys-
tem to a perturbation which also will exhibit universal
features. Finally the theoretical results of the paper are
compared with numerical integration of the forced Duff-
ings equation. In particular, the numerically determined
bifurcation point is compared with the theory.

The forced damped nonlinear oscillator is assumed to
be of the type

dv(z)
dz

Ty + azy + = Ap cos(wpt), (1)

where « is a damping constant and V(z) is a nonlinear
potential, which for small z, linearized around a min-
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imum &,,, has the Taylor expansion V(z) = iwiz? +
%73:3 + .-+, where wp and vy are nonzero. Finally Ap and
wp are the amplitude and the frequency of the drive of
the driving field. Furthermore, it is assumed that the
particle does not jump to another minimum.

The above equation can be linearized about the peri-
odic limit cycle zo(t). This gives, due to the periodic
coefficients, a Floquet equation

2

av
&t +aby +

| €=o. (2)

Zo

From this linear equation the stability of the limit cycle
can in principle be found, but the solution (limit cycle
Zo) to the full nonlinear problem has to be known. Even
if the full solution is known it is in general not possible
to find a closed expression for the stability as a function
of the system parameters [3]. The present study is, how-
ever, an exception where the limit cycle and its stability
can be found analytically. This occurs at the transition
from dissipative to a Hamiltonian system, when the sys-
tem is driven at twice its resonance frequency and in the
restricted parameter space where the amplitude of the
driving field is smaller than its critical value.
The periodic coefficient in Eq. (1) can be written

a2V
prol i wg + vzo(t) + O(}). (3)
To

There exist two solutions to the above equation of the
form [3, 4]

§r = e’*'Py(t), &x(t+27m/wp) = p+Pi(t), (4)
where py = exp(27py/wp) are called the Floquet mul-
tipliers and are the p+ Floquet exponents. The Floquet
multipliers play a very important role here. The function
P, is periodic with the same period as the solution, zg,
to the nonlinear problem

P:h(t+27T/UJD) = P:{:(t). (5)

The two Floquet multipliers are constrained by the dis-
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sipation in the system through

pipe = exp(—k), (6)

where kK = 2ma/wp. As the bifurcation point is ap-
proached one of the multipliers tends to —1, and the other
to exp(—2ma/wp).

Next we argue that the bifurcation point Ac scales
to zero when the damping tends to zero. This is done
by taking the limit Ap — 0 followed by @ — 0. Now
the linearized equation (2) is simply that of a harmonic
oscillator. However, in this case the system is only
marginally stable against a period-doubling bifurcation
(1 = p2 = —1)[5]. In other words the bifurcation point
has scaled to zero amplitude for a driving field at twice
the resonant frequency. If the oscillator is not driven at
twice the resonant frequency a finite threshold amplitude
is needed in order for the system to bifurcate. This will
become clear below where the Floquet exponents are de-
termined.

Knowing that the critical value of the driving field
scales to zero it is expected that, as the damping tends
to zero, there exist a scaling relation between Ac and
a. Since the bifurcation point scales to zero so does the
limit cycle g, which means that the limit cycle can be
found by linear response. In this limit, the limit cycle
xo is given by zg = (A/3)w? cos(2wot), which we find by
solving Eq. (1) for r « 1 and a < 1.

We now determine the Floquet exponents. By remov-
ing the damping term in Eq. (2) with the transformation
& = £ exp(at/2) and subsequently Fourier transforming,
we obtain

. €
(”’wznz + 2zwnp+w?% + p2)pn + E(pn—{—l +Pn-1) =0,
(7)

where p,, is the Fourier transform of Pi, w% = wg —
(a/2)%, and € = yA/3wg?. This is a trigonal matrix
equation which can be solved along the same lines of
reasoning as for Bloch states in a weak periodic potential.
For € = 0, we have the solution p = +iwg, and p, = 0
unless n = 0. For € # 0, p, is different from zero for all n,
but since they will be of order ¢, it is straightforward to
see that the only p,’s which are nonzero to linear order
in € are p41. We can thus truncate Eq. (7) at n = +1,
and we have

Hi €¢/2 0 P
€/2 Hy €/2 po | =0, (8)
0 6/2 H, P-1

where Hy, = —w?n? + 2iwnp + w¥ + p?. The Floquet ex-
ponents, p4, are found by requiring that the determinant
of the matrix above vanish. If we use that R = p? + w%
is of the order € we obtain

R=a%—[ar— (£, ©)

where A = \/w} — (wp/2)? is the detuning away from
the resonance for half-harmonic generation. This finally
gives us the Floquet exponents:

. R
ptr i (wn F 2wR) . (10)
Note the nonanalytic dependence of the driving field, e,
which is a consequence of the self-consistent calculation
of the Floquet exponents. If the system is driven away
from resonance and if € is sufficiently smaller than the
detuning, we see that R remains real and will just shift
the frequency by a small amount. At a critical value R
gets an imaginary part and the system is driven toward
the instability. This has a simple geometrical interpre-
tation in terms of the Floquet multipliers discussed in
Ref. [6]. The situation when the square root in Eq. (9)
is zero translates exactly to the point where the Floquet
multipliers meet at the real axis.

The stability of the solution is determined from p..
The critical value is determined by Re[p4+] = a/2. Using
this criteria, the amplitude of the driving field at the
bifurcation point becomes, in the special case where A =
0,

_ baw} 6V (zx)]%/?
Ty VM (zwm)

This is a useful result since the expression for Ac can
be used to scale the amplitude of the driving field. This
agrees with a result found by Pedersen, Samuelsen, and
Saermark [7], who considered the special case of the
resisted shunted Josephson junction (RSJ) model. It
should, however, be emphasized that the present formula
for the bifurcation point is a general result.

The two solutions of the homogeneous equation are
now found to be given by

Ac

(11)

£4(t) = [cos(wt!) F sin(wht)] exp [— (1 + Ai;) t'] .
(12)

Here we have rescale time and frequency: t’ = ta/2 and
wh = wgr2/a. The functions are in fact universal in the
sense that for a large class of nonlinear potentials the de-
viations from the limit cycle have this form. The class
is defined by having nonzero wg and <. It is seen from
the expression for A¢ that the bifurcation point moves
to infinity for vanishing ~. This agrees with the expe-
rience that the limit cycle has to be nonsymmetric in
time (contain even harmonics in its Fourier spectrum),
since the  term breaks the symmetry [8]. In summary,
we have, in the limit of small damping, found the ex-
plicit form of the solutions to the homogeneous Mathieu
equation and found a formula for the critical value of the
driving field. We also saw that the non-linearity in the
limit of a small driving amplitude does not alter the peri-
odic part of the solutions which are simply given by that
of a driven harmonic oscillator. The nonlinearity enters
only in the exponents which determine the stability of
the solutions. The key to this was the use of Floquet
theory which enabled us in a nonperturbative fashion to
find these exponents.

From the above solution to the homogeneous equation,
solutions to small perturbations on Eq. (1) can be calcu-
lated. These solutions will, when scaled with the damp-
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ing, also possess the same scaling relations as found for
the homogeneous equation. An example is the squeezing
spectrum of thermal fluctuations as studied in Ref. [6, 9].
However, since the response diverges at the bifurcation
point, the scaling relations for the response are not valid
in the vicinity of the bifurcation point.

We have compared the simple law for the bifurcation
point with numerical simulations of a driven Duffing’s
oscillator. The governing differential equation is given
by

Ty + axy + x4+ 2° = Ap cos(wpt) + 7, (13)

where o« is the damping coefficient, Ap and wp are the
amplitude of the driving field and frequency, respectively.
Finally, n is a constant force term. This equation was
solved by a fourth-order Runge-Kutta method. In all the
calculations the frequency of the drive is fixed at twice
the resonance frequency of the system. The equation
was solved for increasing values of the driving amplitude.
For each value of the drive the solution was converged
towards the limit cycle so that the difference between to
cycles zo(2m /wp+t)—zo(t) was less than 10~7. This limit
cycle was used to determine the two Floquet multipliers
numerically. The accuracy of the method was checked by
making sure that the product of the two multipliers p1 2
was within 1075 of the theoretical value exp(—a27/wp).
The bifurcation point was then identified as the value of
Ap where one of the multipliers was equal to —1.

In Fig. 1 the scaled bifurcation point A¢/c as a func-
tion of 7 is plotted for two different values a.. The solid
curve is the theoretical determined value of Ac/a as a
function of 7, and is in this case given by

A_C_ _ 1+ 3.’17%1)%

14
S P (14)
where
s ny JL n s J1  n?
"""‘“\/2+ 27 T4 \/2+ ST
(15)

and here z,, is the minimum of the potential. There is
seen to be a very good agreement between the theory and
the numerically found bifurcation point. For the higher
damping there is a small deviation from the theoretical
curve, but as the damping becomes smaller the numerical
determined points reproduce the theoretical curve. We
have also performed numerical calculations for the forced
pendulum (or the RSJ model of a Josephson junction)
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FIG. 1. The scaled bifurcation point Ac/a for the Duff-
ing’s oscillator as a function of 7. The points are numerically
determined and the solid curve is the theory. The numer-
ically used values of a are 0.1 and 0.01. The figure shows
that the theory accounts well for the numerical results even
for the larger value of the damping. We also see that even
though the scaling relation between a and Ac is simple the
relation between Ac and the remaining system parameters is
in general complicated.

and also in this case we find good agreement with the
theory.

In conclusion a nonlinear oscillator driven at twice its
resonance frequency has been studied. The emphasis has
been on the dynamics at the transition between dissipa-
tive and a Hamiltonian system. In this limit the period-
doubling bifurcation point Ap has been found by using
Floquet theory on the linearized equation. The bifur-
cation point scaled in a simple way with the damping
but may at the same time be a complicated function of
the remaining system parameters. Rescaling the solu-
tion with the determined value of Ac gives a solution
with universal features. The response of the system to a
small perturbation will have the same universal features
which follows from the fact that the response to a per-
turbation is constructed from the homogeneous solution.
The theory was compared with numerically calculations
on the driven damped nonlinear Duffing’s oscillator and
a remarkably good agreement was found. The numerical
results were found for the system driven at twice its res-
onant frequency. However, the theory should also work
for a finite detuning; see Eq. (9). We note that our re-
sults are only valid at the transition to the corresponding
Hamiltonian system but as the numerical example shows,
the features we found at this fixed point are indeed ex-
pected to describe the system correctly for finite values of
the damping as well. It should be possible to investigate
the features of the present theory experimentally.
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